Ethanol Production from Nondetoxified Dilute-Acid Lignocellulosic Hydrolysate by Cocultures of Saccharomyces cerevisiae Y5 and Pichia stipitis CBS6054

نویسندگان

  • Ping Wan
  • Dongmei Zhai
  • Zhen Wang
  • Xiushan Yang
  • Shen Tian
چکیده

Saccharomyces cerevisiae Y5 (CGMCC no. 2660) and Issatchenkia orientalis Y4 (CGMCC no. 2159) were combined individually with Pichia stipitis CBS6054 to establish the cocultures of Y5 + CBS6054 and Y4 + CBS6054. The coculture Y5 + CBS6054 effectively metabolized furfural and HMF and converted xylose and glucose mixture to ethanol with ethanol concentration of 16.6 g/L and ethanol yield of 0.46 g ethanol/g sugar, corresponding to 91.2% of the maximal theoretical value in synthetic medium. Accordingly, the nondetoxified dilute-acid hydrolysate was used to produce ethanol by co-culture Y5 + CBS6054. The co-culture consumed glucose along with furfural and HMF completely in 12 h, and all xylose within 96 h, resulting in a final ethanol concentration of 27.4 g/L and ethanol yield of 0.43 g ethanol/g sugar, corresponding to 85.1% of the maximal theoretical value. The results indicated that the co-culture of Y5 + CBS6054 was a satisfying combination for ethanol production from non-detoxified dilute-acid lignocellulosic hydrolysates. This co-culture showed a promising prospect for industrial application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New cultive medium for bioconversion of C5 fraction from sugarcane bagasse using rice bran extract

The use of hemicellulosic hydrolysates in bioprocesses requires supplementation as to ensure the best fermentative performance of microorganisms. However, in light of conflicting data in the literature, it is necessary to establish an inexpensive and applicable medium for the development of bioprocesses. This paper evaluates the fermentative performance of Scheffersomyces (Pichia) stipitis and ...

متن کامل

Two-step process using immobilized Saccharomyces cerevisiae and Pichia stipitis for ethanol production from Ulva pertusa Kjellman hydrolysate.

We established a two-step production process using immobilized S. cerevisiae and P. stipitis yeast to produce ethanol from seaweed (U. pertusa Kjellman) hydrolysate. The process was designed to completely consume both glucose and xylose. In particular, the yeasts were immobilized using DEAE-corncob and DEAE-cotton, respectively. The first step of the process included a continuous column reactor...

متن کامل

Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates

0306-2619/$ see front matter 2011 Elsevier Ltd. A doi:10.1016/j.apenergy.2011.08.020 ⇑ Corresponding author. Tel.: +351 253604424; fax E-mail addresses: [email protected], so (S.I. Mussatto). Significant amounts of wastes are generated by the coffee industry, among of which, coffee silverskin (CS) and spent coffee grounds (SCG) are the most abundantly generated during the beans roasting and...

متن کامل

Xylitol production by Saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob

Xylitol production was compared in fed batch fermentation by Saccharomyces cerevisiae strains overexpressing xylose reductase (XR) genes from Candida tropicalis, Pichia stipitis, Neurospora crassa, and an endogenous gene GRE3. The gene encoding a xylose specific transporter (SUT1) from P. stipitis was cloned to improve xylose transport and fed batch fermentation was used with glucose as a cosub...

متن کامل

Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF)

BACKGROUND Pichia stipitis xylose reductase (Ps-XR) has been used to design Saccharomyces cerevisiae strains that are able to ferment xylose. One example is the industrial S. cerevisiae xylose-consuming strain TMB3400, which was constructed by expression of P. stipitis xylose reductase and xylitol dehydrogenase and overexpression of endogenous xylulose kinase in the industrial S. cerevisiae str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012